find the answer of limit

Answer:
p.
Step-by-step explanation:
Find limit of the numerator;
limit x --> 0 of sin(p arcsin x) = 0 as (sin 0= 0)
Denominator -
limit x ---> 0 of x is also 0
So we have the fraction 0/0 (indeterminate)
So we try applying apply ing L'hopitals Rule - that is differentiate numerator and denominator
We obtain p cos (p arcsin x) / (1 - x^2)/ 1 as the derivative
This gives us
limit x ---> 0 of p cos (p arcsin x) / (1 - x^2)
= p/1 (as cos 0 = 1
= p
Substitute [tex]y=\arcsin(x)[/tex], so both [tex]x[/tex] and [tex]y[/tex] are approaching 0.
[tex]\displaystyle \lim_{x\to0} \frac{\sin(p \arcsin(x))}{x} = \lim_{y\to0} \frac{\sin(py)}{\sin(y)}[/tex]
Then we have
[tex]\displaystyle \lim_{y\to0} \frac{\sin(py)}{py} \cdot \frac{y}{\sin(y)} \cdot p = p \cdot \lim_{y\to0} \frac{\sin(py)}{py} \cdot \lim_{y\to0} \frac{y}{\sin(y)} = \boxed{p}[/tex]
where we use the known limit
[tex]\displaystyle \lim_{x\to0}\frac{\sin(ax)}{ax} = 1[/tex]
if [tex]a\neq0[/tex].