Answer:
f'(x) = 5
Step-by-step explanation:
differentiate using the power rule
[tex]\frac{d}{dx}[/tex] (a[tex]x^{n}[/tex] ) = na[tex]x^{n-1}[/tex] and [tex]\frac{d}{dx}[/tex] (constant) = 0
given
f(x) = 5x + 5 , then
f'(x) = 5[tex]x^{(1-1)}[/tex] + 0
= 5[tex]x^{0}[/tex] + 0
= 5