Respuesta :
Quadratic formula is derived from completing the square:
ax² + bx + c = 0
ax² + bx = −c
x² + b/a x = −c/a
Complete square on left side by adding (b/(2a))² to both sides:
x² + b/a x + (b/(2a))² = (b/(2a))² − c/a
(x + b/(2a))² = (b²−4ac)/(2a)²
x + b/(2a) = ± √(b²−4ac)/(2a)
x = −b/(2a) ± √(b²−4ac)/(2a)
x = (−b ± √(b²−4ac)) / (2a)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
or
ax² + bx + c = 0
ax² + bx = −c
4a (ax² + bx) = −4ac
4a²x² + 4abx = −4ac
Complete the square on left side by adding b² to both sides
4a²x² + 4abx + b² = b²−4ac
(2ax + b)² = b²−4ac
2ax + b = ± √(b²−4ac)
2ax = −b ± √(b²−4ac)
x = (−b ± √(b²−4ac)) / (2a)
ax² + bx + c = 0
ax² + bx = −c
x² + b/a x = −c/a
Complete square on left side by adding (b/(2a))² to both sides:
x² + b/a x + (b/(2a))² = (b/(2a))² − c/a
(x + b/(2a))² = (b²−4ac)/(2a)²
x + b/(2a) = ± √(b²−4ac)/(2a)
x = −b/(2a) ± √(b²−4ac)/(2a)
x = (−b ± √(b²−4ac)) / (2a)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
or
ax² + bx + c = 0
ax² + bx = −c
4a (ax² + bx) = −4ac
4a²x² + 4abx = −4ac
Complete the square on left side by adding b² to both sides
4a²x² + 4abx + b² = b²−4ac
(2ax + b)² = b²−4ac
2ax + b = ± √(b²−4ac)
2ax = −b ± √(b²−4ac)
x = (−b ± √(b²−4ac)) / (2a)
Answer:
Quadratic formula can be derived from completing the square method .
Step-by-step explanation:
Consider a quadratic equation : [tex]ax^2+bx+c=0[/tex] where a , b , c are variables and [tex]a\neq 0[/tex]
On solving this equation by completing the square , we get
[tex]ax^2+bx+c=0\\x^2+\frac{bx}{a}+\frac{c}{a}=0\\x^2+2\left ( \frac{b}{2a} \right )x+\frac{c}{a}=0\\x^2+2\left ( \frac{b}{2a} \right )x+\left ( \frac{b}{2a} \right )^2-\left ( \frac{b}{2a} \right )^2+\frac{c}{a}=0[/tex]
[tex]x^2+2\left ( \frac{b}{2a} \right )x+\left (\frac{b}{2a}\right )^2=\left ( \frac{b}{2a } \right ) ^2-\frac{c}{a}[/tex]
On taking square root on both sides, we get
[tex]\left ( x+\frac{b}{2a} \right )=\pm \sqrt{\frac{b^2-4ac}{4a^2}}\\\left ( x+\frac{b}{2a} \right )=\pm \sqrt{\frac{D}{4a^2}}\,\,;\,\,D=b^2-4ac\\\left ( x+\frac{b}{2a} \right )=\pm \frac{\sqrt{D}}{2a}\\x=\frac{-b\pm \sqrt{D}}{2a}[/tex]
which is basically a quadratic formula .