Respuesta :
original :
(45,65,70,80,85,100)
Q1 = 65
Q2 = (70 + 80) / 2 = 150/2 = 75
Q3 = 85
IQR = Q3 - Q1 = 85 - 65 = 20
new :
(65,70,80,85)
Q1 = (65 + 70)/2 = 135/2 = 67.5
Q2 = (70 + 80) / 2 = 75
Q3 = (80 + 85) / 2 = 165/2 = 82.5
IQR = Q3 - Q1 = 82.5 - 67.5 = 15
IQR of original = 20 <=====
IQR of new = 15 <=====
(45,65,70,80,85,100)
Q1 = 65
Q2 = (70 + 80) / 2 = 150/2 = 75
Q3 = 85
IQR = Q3 - Q1 = 85 - 65 = 20
new :
(65,70,80,85)
Q1 = (65 + 70)/2 = 135/2 = 67.5
Q2 = (70 + 80) / 2 = 75
Q3 = (80 + 85) / 2 = 165/2 = 82.5
IQR = Q3 - Q1 = 82.5 - 67.5 = 15
IQR of original = 20 <=====
IQR of new = 15 <=====
Answer:
interquartile range of original data:20
New data:15
Step-by-step explanation:
The original data is given as:
45 65 70 80 85 100.
lower quartile([tex]Q_{1}[/tex])=65
median of data([tex]Q_{2}[/tex])=(70+80)/2=75
upper quartile([tex]Q_{3}[/tex])=85
interquartile range=[tex]Q_{3}[/tex]-[tex]Q_{1}[/tex]
=85-65=20
The changed data is given as:
65 70 80 85
lower quartile([tex]Q_{1}[/tex])=(65+70)/2=67.5
median([tex]Q_{2}[/tex])=(70+80)/2=75
upper quartile([tex]Q_{3}[/tex])=(80+85)/2=82.5
interquartile range=[tex]Q_{3}[/tex]-[tex]Q_{1}[/tex]
=82.5-67.5=15.