Respuesta :
Step-by-step explanation:
Let us identify which quadratic function is positive. Yeah, let's start.
Y = [tex]{ \red{ \sf{2 {x}^{2} - 17x + 30}}}[/tex]
By using factorisation method,
[tex]{ \red{ \sf{2 {x}^{2} - 12x - 5x + 30}}}[/tex]
Take common factors
[tex]{ \red{ \sf{2x(x - 6) - 5(x - 6)}}}[/tex]
[tex]{ \red{ \sf{(2x - 5)}}} \: \: \: \: \: \: \: || \: \: \: \: \: { \red{ \sf{(x - 6)}}}[/tex]
[tex]{ \red{ \sf{2x - 5 = 0}}} \: \: || \: \: { \red{ \sf{x - 6 = 0}}}[/tex]
[tex]{ \red{ \sf{2x = 5}}} \: \: \: \: \: \: \: \: \: || \: \: \: \: { \red{ \boxed{ \green{ \sf{x = 6}}}}}[/tex]
[tex]{ \red{ \sf{{ \frac{ \cancel2}{ \cancel2}x}}}} = { \red{ \sf{ \frac{5}{2}}}}[/tex]
[tex]{ \red{ \boxed{ \green{ \sf{x = \frac{5}{2}}}}}} [/tex]
____________________________________
Y = [tex]{ \blue{ \sf {{ - x}^{2} - 6x - 8}}}[/tex]
By using factorisation method,
[tex]{ \blue{ \sf{ - {x}^{2} - 2x - 4x - 8}}}[/tex]
Take common factors
[tex]{ \blue{ \sf{ - x(x + 2) - 4(x + 2)}}}[/tex]
[tex]{ \blue{ \sf{( - x - 4)}}} \: \: \: \: \: || \: \: \: \: \: { \blue{ \sf{(x + 2)}}}[/tex]
[tex]{ \blue{ \sf{- x - 4 = 0}}} \: \: \: \: \: || \: \: \: \: \: { \blue{ \sf{x + 2 = 0}}}[/tex]
[tex]{ \blue{ \boxed{ \green{ \sf{x = -4}}}}} \: \: \: \: \: || \: \: \: \: \: { \blue{ \boxed{ \green{ \sf{x = -2}}}}}[/tex]
Hence, the first quadratic function is positive and second quadratic function is negative.
Answer:
[tex]\textsf{$y = 2x^2 - 17x + 30$: \quad $\left(-\infty, \dfrac{5}{2}\right) \cup (6, \infty)$}[/tex]
[tex]\textsf{$y = - x^2 - 6x - 8$: \quad $\left(-\infty, -4\right) \cup (-2, \infty)$}[/tex]
Step-by-step explanation:
A function is positive when it is above the x-axis, and negative when it is below the x-axis.
---------------------------------------------------------------------------------
Given quadratic equation:
[tex]y = 2x^2 - 17x + 30[/tex]
Factor the equation:
[tex]\implies y = 2x^2 - 17x + 30[/tex]
[tex]\implies y = 2x^2 - 5x-12x + 30[/tex]
[tex]\implies y=x(2x-5)-6(2x-5)[/tex]
[tex]\implies y=(x-6)(2x-5)[/tex]
The x-intercepts of the parabola are when y = 0.
To find the x-intercepts, set each factor equal to zero and solve for x:
[tex]\implies x-6=0 \implies x=6[/tex]
[tex]\implies 2x-5=0 \implies x=\dfrac{5}{2}[/tex]
Therefore, the x-intercepts are x = ⁵/₂ and x = 6.
The leading coefficient of the given function is positive, so the parabola opens upwards.
The function is positive when it is above the x-axis.
Therefore, the function is positive for the values of x less than the smallest x-intercept and more than the largest x-intercept:
- [tex]\textsf{Solution: \quad $x < \dfrac{5}{2}$ \;and \;$x > 6$}[/tex]
- [tex]\textsf{Interval notation: \quad $\left(-\infty, \dfrac{5}{2}\right) \cup (6, \infty)$}[/tex]
---------------------------------------------------------------------------------
Given quadratic equation:
[tex]y = - x^2 - 6x - 8[/tex]
Factor the equation:
[tex]\implies y = - x^2 - 6x - 8[/tex]
[tex]\implies y = -(x^2 +6x +8)[/tex]
[tex]\implies y = -(x^2 +4x +2x+8)[/tex]
[tex]\implies y = -((x(x+4)+2(x+4))[/tex]
[tex]\implies y = -(x+4)(x+2)[/tex]
The x-intercepts of the parabola are when y = 0.
To find the x-intercepts, set each factor equal to zero and solve for x:
[tex]\implies x+4=0 \implies x=-4[/tex]
[tex]\implies x+2=0 \implies x=-2[/tex]
Therefore, the x-intercepts are x = -4 and x = -2.
The leading coefficient of the given function is negative, so the parabola opens downwards.
The function is negative when it is below the x-axis.
Therefore, the function is negative for the values of x less than the smallest x-intercept and more than the largest x-intercept:
- [tex]\textsf{Solution: \quad $x < -4$ \;and \;$x > -2$}[/tex]
- [tex]\textsf{Interval notation: \quad $\left(-\infty, -4\right) \cup (-2, \infty)$}[/tex]

