Respuesta :

What is the range of y = –3sin(x) – 4?

[-7,-1]
{y | -7 
≤ y ≤ -1}

Answer:  [-7,-1]

Explanation:

range of a function is  that limit in which variation of any function is possible.

general range of sinx is between [-1,1]

-1[tex]\leq[/tex]sinx[tex]\leq[/tex]1                             (A)

our required function is y= -3sinx - 4

So, as to obtain this function we will multiply  the each side in Equation (A) by -3 we will get

-3[tex]\geq[/tex]-3sinx[tex]\geq[/tex]3                            (B)

now subtract from  4 from each side of (B) we will get

-7[tex]\geq[/tex]-3sinx-4[tex]\geq[/tex]-1

Hence, required range of the given function y= -3sinx-4 is [-7,-1].