Respuesta :
Note: I'm assuming you mean that [tex]64=4^x[/tex].
Taking the logarithm gives:
[tex]\log{4^x} = \log{64}[/tex]
Using our rules of logarithms ([tex]\log{a^b} = b \log a[/tex]), we have:
[tex]x \log 4 = \log 64[/tex]
This corresponds to answer A.
Taking the logarithm gives:
[tex]\log{4^x} = \log{64}[/tex]
Using our rules of logarithms ([tex]\log{a^b} = b \log a[/tex]), we have:
[tex]x \log 4 = \log 64[/tex]
This corresponds to answer A.
Answer:
Option B is correct
[tex]\log_4 64 = x[/tex]
Step-by-step explanation:
using logarithmic rules:
[tex]\log a^b = b\log a[/tex]
[tex]\log_n m = \frac{\log m}{\log n}[/tex]
Given the equation:
[tex]64 = 4^x[/tex]
Take log both sides we have;
[tex]\log 64 = \log 4^x[/tex]
Apply the logarithmic rules:
[tex]\log 64 = x\log 4[/tex]
Divide both sides by log 4 we have;
[tex]\frac{\log 64}{\log 4}= x[/tex]
Again, apply the logarithmic rules:
[tex]\log_4 64 = x[/tex]
therefore, we get the given expression as a logarithmic equation is, [tex]\log_4 64 = x[/tex]