Respuesta :

complimentary means

P + Q = 90

P = 90 - Q

Cos(p) = cos(90-Q) = sinQ = 4/5 ( given)

You can find CosQ from the triangle of Q

CosQ = sqrt(5^2 - 4^2)/5 = 3/5 


Required = CosP + CosQ = 4/5 + 3/5 = 7/5 

Answer:

CosP +CosQ =  [tex]\frac{7}{5}[/tex] .

Step-by-step explanation:

Given : In ΔPQR, ∠P and ∠Q are complimentary angles. If sinQ = 4/5 .

To find :  cosP + cosQ =

Solution : We have given that ∠P and ∠Q are complimentary angles.

P + Q = 90 .

Q = 90 - P.

Then sin( 90 -p ) = [tex]\frac{4}{5}[/tex] .

As we know that sin( 90 -p ) = CosP = [tex]\frac{4}{5}[/tex] .

We have SinQ = [tex]\frac{4}{5}[/tex] .

CosQ =[tex]\sqrt{1 - Sin^{2}Q }[/tex]

Plugging the value of  SinQ

CosQ = [tex]\sqrt{1 - (\frac{4}{5}) ^{2} }[/tex].

CosQ = [tex]\sqrt{1 - (\frac{16}{25})}[/tex].

CosQ =[tex]\sqrt{\frac{9}{25} }[/tex].

CosQ =  [tex]\frac{3}{5}[/tex] .

CosP +CosQ =  [tex]\frac{4}{5}[/tex] +  [tex]\frac{3}{5}[/tex].

CosP +CosQ =  [tex]\frac{7}{5}[/tex] .

Therefore, CosP +CosQ =  [tex]\frac{7}{5}[/tex] .