Respuesta :
it is encouraged to rationalize the denomenator
you can rationalize the denomenator
one way is to convert to exponent
and remember your exponential rules
remember that [tex] \sqrt[n]{x^m}=x^{\frac{m}{n}} [/tex]
also, [tex](x^a)(x^b)=x^{a+b}[/tex]
and [tex]x^{-m}=\frac{1}{x^m}[/tex]
so
[tex]\frac{1}{\sqrt[4]{x^3}}=\frac{1}{x^{\frac{3}{4}}}[/tex]
so we want x^{4/4}, so 1/4+3/4=4/4
times the whole thing by [tex]\frac{x^{\frac{1}{4}}}{x^{\frac{1}{4}}}[/tex] to get
[tex]\frac{x^{\frac{1}{4}}}{x^{\frac{4}{4}}}=\frac{x^{\frac{1}{4}}}{x}=\frac{\sqrt[4]{x}}{x}[/tex]
but, it looks alot nicer in the original form tho
the 2nd one, we multiply it by [tex]\frac{x^{\frac{4}{5}}}{x^{\frac{4}{5}}}[/tex] to get [tex]\frac{x^{\frac{4}{5}}}{x}=\frac{\sqrt[5]{x^4}}{x}[/tex]
but it looks nicer in original form tho
so you can ratinalize the denomenator but you don't always have to
you can rationalize the denomenator
one way is to convert to exponent
and remember your exponential rules
remember that [tex] \sqrt[n]{x^m}=x^{\frac{m}{n}} [/tex]
also, [tex](x^a)(x^b)=x^{a+b}[/tex]
and [tex]x^{-m}=\frac{1}{x^m}[/tex]
so
[tex]\frac{1}{\sqrt[4]{x^3}}=\frac{1}{x^{\frac{3}{4}}}[/tex]
so we want x^{4/4}, so 1/4+3/4=4/4
times the whole thing by [tex]\frac{x^{\frac{1}{4}}}{x^{\frac{1}{4}}}[/tex] to get
[tex]\frac{x^{\frac{1}{4}}}{x^{\frac{4}{4}}}=\frac{x^{\frac{1}{4}}}{x}=\frac{\sqrt[4]{x}}{x}[/tex]
but, it looks alot nicer in the original form tho
the 2nd one, we multiply it by [tex]\frac{x^{\frac{4}{5}}}{x^{\frac{4}{5}}}[/tex] to get [tex]\frac{x^{\frac{4}{5}}}{x}=\frac{\sqrt[5]{x^4}}{x}[/tex]
but it looks nicer in original form tho
so you can ratinalize the denomenator but you don't always have to