Respuesta :

Answer:

Step-by-step explanation:

To evaluate the expression: 1 2 2 tan² 45° cos² 30° X (sin² 30° + 4 cot² 45° - sec² 60°), we need to follow the order of operations (PEMDAS/BODMAS) and evaluate the expression step by step.

Let's break down the expression and evaluate each part:

tan² 45°: The tangent of 45° is equal to 1, so tan² 45° = 1² = 1.

cos² 30°: The cosine of 30° is equal to (√3)/2, so cos² 30° = (√3/2)² = 3/4.

sin² 30°: The sine of 30° is equal to 1/2, so sin² 30° = (1/2)² = 1/4.

cot² 45°: The cotangent of 45° is equal to 1, so cot² 45° = 1² = 1.

sec² 60°: The secant of 60° is equal to 2, so sec² 60° = 2² = 4.

Now, let's substitute these values back into the original expression:

1 2 2 (1) (3/4) X (1/4 + 4(1) - 4)

Simplifying further:

1 2 2 (3/4) X (1/4 + 4 - 4)

1 2 2 (3/4) X (1/4)

1 2 2 (3/16)

Multiplying:

1 2 (6/16)

1 (12/16)

Finally, simplifying:

3/4

Therefore, the value of the expression 1 2 2 tan² 45° cos² 30° X (sin² 30° + 4 cot² 45° - sec² 60°) is 3/4.