Respuesta :
Answer:
Explanation:
Code
from sympy import symbols, Eq, solve
# define the symbols
Y, C, I, r, T, G = symbols('Y C I r T G')
# given values
Y_val = 5000
T_val = 1000
G_val = 1500
# equations for C and I
C_eq = Eq(C, 1200 + 0.3*(Y - T) - 50*r)
I_eq = Eq(I, 1500 - 50*r)
# substitute the given values into the equations
C_eq_sub = C_eq.subs({Y: Y_val, T: T_val})
I_eq_sub = I_eq.subs({Y: Y_val, T: T_val})
# solve the equations for C and I
C_val = solve(C_eq_sub, C)[0]
I_val = solve(I_eq_sub, I)[0]
# equilibrium condition: Y = C + I + G
equilibrium_eq = Eq(Y, C + I + G)
# substitute the values of C, I, and G into the equilibrium equation
equilibrium_eq_sub = equilibrium_eq.subs({C: C_val, I: I_val, G: G_val})
# solve the equilibrium equation for r
r_val = solve(equilibrium_eq_sub, r)[0]
C_val, I_val, r_val
Executed Code Output
(2400.0 - 50.0*r, 1500 - 50*r, 54.0 - 0.01*Y)
Code
# substitute the given value of Y into the equation for r
r_val_sub = r_val.subs(Y, Y_val)
# substitute the value of r into the equations for C and I
C_val_sub = C_val.subs(r, r_val_sub)
I_val_sub = I_val.subs(r, r_val_sub)
C_val_sub, I_val_sub, r_val_sub
Executed Code Output
(2200.00000000000, 1300.00000000000, 4.00000000000000)
The equilibrium values are as follows: Consumption (C) is 2200, Investment (I) is 1300, and the real interest rate (r) is 4.