Which expression is equivalent to √2x^5/18? Assume x > 0.

Answer: [tex]\frac{x^2\sqrt{x}}{3}[/tex]
Step-by-step explanation:
Here the given expression is, [tex]\sqrt{\frac{2x^5}{18} }[/tex]
= [tex]\sqrt{\frac{x^5}{9} }[/tex]
= [tex]\sqrt{\frac{x^5}{9} }[/tex]
= [tex]\sqrt{\frac{x^4.x^1}{9} }[/tex] (because [tex]x^{m+n}= x^m.x^n[/tex] )
=[tex]\frac{x^2\sqrt{x} }{3}[/tex]
Thus,[tex]\sqrt{\frac{2x^5}{18} }[/tex] =[tex]\frac{x^2\sqrt{x} }{3}[/tex]
Equivalent expressions are expressions with equal values
The equivalent expression of [tex]\sqrt{\frac{2x^5}{18}}[/tex]is [tex]\frac{x^2\sqrt{ x}}{3}[/tex]
The expression is given as:
[tex]\sqrt{\frac{2x^5}{18}}[/tex]
Divide 2 and 18, by 2
[tex]\sqrt{\frac{2x^5}{18}} = \sqrt{\frac{x^5}{9}}[/tex]
Take the square root of 9
[tex]\sqrt{\frac{2x^5}{18}} = \frac{\sqrt{x^5}}{3}[/tex]
Expand x^5 as x^4 * x
[tex]\sqrt{\frac{2x^5}{18}} = \frac{\sqrt{x^4 * x}}{3}[/tex]
Take the square root of x^4
[tex]\sqrt{\frac{2x^5}{18}} = x^2\frac{\sqrt{ x}}{3}[/tex]
Rewrite as:
[tex]\sqrt{\frac{2x^5}{18}} = \frac{x^2\sqrt{ x}}{3}[/tex]
Hence, the equivalent expression of [tex]\sqrt{\frac{2x^5}{18}}[/tex]is [tex]\frac{x^2\sqrt{ x}}{3}[/tex]
Read more about equivalent expressions at:
https://brainly.com/question/2972832