What is the following difference? 2ab(3√192ab2)-5(3√81a4b5)

we have
[tex]2ab(\sqrt[3]{192ab^{2}}) -5(\sqrt[3]{81a^{4}b^{5}})[/tex]
we know that
[tex]192=3*4^{3} \\81= 3^{4}[/tex]
Substitute in the expression above
[tex]=2ab(\sqrt[3]{3*4^{3}ab^{2}}) -5(\sqrt[3]{3^{4}a^{4}b^{5}})[/tex]
remember that
[tex]\sqrt[3]{4^{3}}=4\\ \\ \sqrt[3]{3^{4}a^{4}b^{5}}=3ab \sqrt[3]{3ab^{2}}[/tex]
Substitute
[tex]=2ab(4)(\sqrt[3]{3ab^{2}}) -5(3)(a)(b)(\sqrt[3]{3ab^{2}})[/tex]
[tex]=8ab(\sqrt[3]{3ab^{2}}) -15ab(\sqrt[3]{3ab^{2}})[/tex]
[tex]=-7ab(\sqrt[3]{3ab^{2}})[/tex]
therefore
the answer is
[tex]-7ab(\sqrt[3]{3ab^{2}})[/tex]
Equivalent expressions are expressions with equal values
The difference of [tex]2ab[\sqrt[3]{192ab^2}] - 5[\sqrt[3]{81a^4b^5}][/tex] is [tex]-7ab\sqrt[3]{3ab^2}[/tex]
The expression is given as:
[tex]2ab[\sqrt[3]{192ab^2}] - 5[\sqrt[3]{81a^4b^5}][/tex]
Rewrite the above expression as:
[tex]2ab[\sqrt[3]{3 * 4^3 * ab^2} ]- 5[\sqrt[3]{3 * 3^3 * a^4b^5}][/tex]
Evaluate the cube roots
[tex]2ab[4\sqrt[3]{3 ab^2} ]- 5[3ab\sqrt[3]{3ab^2}][/tex]
Evaluate the products
[tex]8ab\sqrt[3]{3 ab^2}- 15ab\sqrt[3]{3ab^2}[/tex]
Evaluate the differences
[tex]-7ab\sqrt[3]{3ab^2}[/tex]
Hence, the difference of [tex]2ab[\sqrt[3]{192ab^2}] - 5[\sqrt[3]{81a^4b^5}][/tex] is [tex]-7ab\sqrt[3]{3ab^2}[/tex]
Read more about equivalent expressions at:
https://brainly.com/question/2972832