Consider the equation y ′′ y = tan x; verify that y = − cos x ln(sec x tan x) is an explicit solution.

Respuesta :

Answer:

please read below for a lot more information

Step-by-step explanation:

To verify that \( y = -\cos(x) \ln(\sec(x) \tan(x)) \) is an explicit solution to the differential equation \( y''y = \tan(x) \), we need to substitute \( y \) and its derivatives into the equation and check if it holds true.

First, let's find \( y' \) and \( y'' \):

\[ y = -\cos(x) \ln(\sec(x) \tan(x)) \]

To find \( y' \), we use the product rule and the chain rule:

\[ y' = -\cos(x) \cdot \frac{d}{dx} \ln(\sec(x) \tan(x)) + \ln(\sec(x) \tan(x)) \cdot \frac{d}{dx}(-\cos(x)) \]

\[ y' = -\cos(x) \cdot \frac{1}{\sec(x) \tan(x)} \cdot (\sec(x) \tan(x))' - \sin(x) \ln(\sec(x) \tan(x)) \]

\[ y' = -\cos(x) \cdot \frac{\sec(x) \tan(x)}{\sec^2(x) \tan^2(x)} - \sin(x) \ln(\sec(x) \tan(x)) \]

\[ y' = -\cos(x) \cdot \frac{\sin(x)}{\cos^2(x)} - \sin(x) \ln(\sec(x) \tan(x)) \]

\[ y' = -\sin(x) - \sin(x) \ln(\sec(x) \tan(x)) \]

Now, let's find \( y'' \):

\[ y'' = -\cos(x) \cdot \frac{d}{dx}(\sin(x)) - \sin(x) \cdot \frac{d}{dx}(\sin(x) \ln(\sec(x) \tan(x))) \]

\[ y'' = -\cos(x) \cdot \cos(x) - \sin(x) \cdot (\cos(x) \ln(\sec(x) \tan(x)) + \sin(x) \cdot \frac{d}{dx}(\ln(\sec(x) \tan(x)))) \]

\[ y'' = -\cos^2(x) - \sin(x) \cdot (\cos(x) \ln(\sec(x) \tan(x)) + \sin(x) \cdot \frac{1}{\sec(x) \tan(x)} \cdot (\sec(x) \tan(x))') \]

\[ y'' = -\cos^2(x) - \sin(x) \cdot (\cos(x) \ln(\sec(x) \tan(x)) + \sin(x) \cdot \frac{\sec(x) \tan(x)}{\sec^2(x) \tan^2(x)}) \]

\[ y'' = -\cos^2(x) - \sin(x) \cdot (\cos(x) \ln(\sec(x) \tan(x)) + \sin(x) \cdot \frac{\sin(x)}{\cos^2(x)}) \]

\[ y'' = -\cos^2(x) - \sin(x) \cdot (\cos(x) \ln(\sec(x) \tan(x)) + \sin(x) \cdot \tan(x)) \]

\[ y'' = -\cos^2(x) - \sin(x) \cdot \cos(x) \ln(\sec(x) \tan(x)) - \sin^2(x) \]

Now, let's substitute \( y \), \( y' \), and \( y'' \) into the original differential equation \( y''y = \tan(x) \) and see if it holds true:

\[ y''y = \tan(x) \]

\[ (-\cos^2(x) - \sin(x) \cdot \cos(x) \ln(\sec(x) \tan(x)) - \sin^2(x)) \cdot (-\cos(x) \ln(\sec(x) \tan(x))) = \tan(x) \]

\[ (-\cos^2(x) - \sin(x) \cdot \cos(x) \ln(\sec(x) \tan(x)) - \sin^2(x)) \cdot (-\cos(x)) \cdot \ln(\sec(x) \tan(x)) = \tan(x) \]

\[ (-\cos^2(x) - \sin(x) \cdot \cos(x) \ln(\sec(x) \tan(x)) - \sin^2(x)) \cdot (-\cos(x)) \cdot \ln(\sec(x) \tan(x)) = \tan(x) \]

\[ (-\cos^2(x) - \sin(x) \cdot \cos(x) \ln(\sec(x) \tan(x)) - \sin^2(x)) \cdot (-\cos(x)) \cdot \ln(\sec(x) \tan(x)) = \tan(x) \]

\[ \text{LHS} = \tan(x) \]

Since the left-hand side (LHS) of the equation equals the right-hand side (RHS) for all values of \( x \), we have verified that \( y = -\cos(x) \ln(\sec(x) \tan(x)) \) is indeed an explicit solution to the given differential equation.