Respuesta :

Answer:

[tex]4.\overline{2}\longleftrightarrow 4\frac29[/tex]

[tex]0.\overline{79}\longleftrightarrow \dfrac{79}{99}[/tex]

[tex]-0.3\overline{6}\longleftrightarrow -\dfrac{11}{30}[/tex]

[tex]-0.5\overline{2}\longleftrightarrow -\dfrac{47}{90}[/tex]

[tex]0.\overline{7}\longleftrightarrow \dfrac79[/tex]

[tex]4.\overline{21}\longleftrightarrow 4\frac{7}{33}[/tex]

Step-by-step explanation:

A repeating decimal is a decimal number with a digit (or group of digits) that repeats forever.

To express a repeating decimal as a rational number:

  1. Create equation 1 by letting x equal the repeating decimal.
  2. Create equation 2 by multiplying both sides of the first equation by 10ⁿ,  where n is the number of digits in the repeating part of the repeating decimal. This shifts the repeating part after the decimal point.
  3. If there are non-repeating digits after the decimal point, create equation 3 by multiplying equation 2 by 10ⁿ, where n is the number of digits in the repeating part. This ensures that all non-repeating digits are shifted after the decimal point.
  4. Subtract the first equation from the second equation (or equation 2 from equation 3, where applicable) to eliminate the part after the decimal.
  5. Rearrange the resulting equation and solve for x.
  6. If possible, reduce the fraction to is simplest form by dividing the numerator and denominator by their greatest common factor.

[tex]\dotfill[/tex]

[tex]\LARGE\text{$\boxed{4.\overline{2}}$}[/tex]

Here, the repeating digit is 2. As there is one digit in the repeating part, we multiply by 10¹ = 10.

[tex]\textsf{Equation 1:}\quad x=4.\overline{2}\\\\\textsf{Equation 2:}\quad 10x=42.\overline{2}[/tex]

Subtract the first equation from the second equation:

[tex]10x-x=42.\overline{2}-4.\overline{2}\\\\9x=38[/tex]

Solve for x:

[tex]x=\dfrac{38}{9}[/tex]

Express as a mixed number:

[tex]x=\dfrac{36+2}{9}=\dfrac{36}{9}+\dfrac{2}{9}=4\frac29[/tex]

Therefore:

[tex]\LARGE\text{$4.\overline{2}\longleftrightarrow 4\frac29$}[/tex]

[tex]\dotfill[/tex]

[tex]\LARGE\text{$\boxed{0.\overline{79}}$}[/tex]

Here, the repeating digits are 79. As there is two digits in the repeating part, we multiply by 10² = 100.

[tex]\textsf{Equation 1:}\quad x=0.\overline{79}\\\\\textsf{Equation 2:}\quad 100x=79.\overline{79}[/tex]

Subtract the first equation from the second equation:

[tex]100x-x=79.\overline{79}-0.\overline{79}\\\\99x=79[/tex]

Solve for x:

[tex]x=\dfrac{79}{99}[/tex]

Therefore:

[tex]\LARGE\text{$0.\overline{79}\longleftrightarrow \dfrac{79}{99}$}[/tex]

[tex]\dotfill[/tex]

[tex]\LARGE\text{$\boxed{-0.3\overline{6}}$}[/tex]

Here, the repeating digit is 6. As there is also one non-repeating digit after the decimal point, we need to create the three equations:

[tex]\textsf{Equation 1:}\quad x=-0.3\overline{6}\\\\\textsf{Equation 2:}\quad 10x=-3.\overline{6}\\\\\textsf{Equation 3:}\quad 100x=-36.\overline{6}[/tex]

Subtract the second equation from the third equation:

[tex]100x-10x=-36.\overline{6}-(-3.\overline{6})\\\\90x=-33[/tex]

Solve for x:

[tex]x=-\dfrac{33}{90}[/tex]

Reduce the fraction to is simplest form:

[tex]x=-\dfrac{33 \div 3}{90\div 3}=-\dfrac{11}{30}[/tex]

Therefore:

[tex]\LARGE\text{$-0.3\overline{6}\longleftrightarrow -\dfrac{11}{30}$}[/tex]

[tex]\dotfill[/tex]

[tex]\LARGE\text{$\boxed{-0.5\overline{2}}$}[/tex]

Here, the repeating digit is 2. As there is also one non-repeating digit after the decimal point, we need to create the three equations:

[tex]\textsf{Equation 1:}\quad x=-0.5\overline{2}\\\\\textsf{Equation 2:}\quad 10x=-5.\overline{2}\\\\\textsf{Equation 3:}\quad 100x=-52.\overline{2}[/tex]

Subtract the second equation from the third equation:

[tex]100x-10x=-52.\overline{2}-(-5.\overline{2})\\\\90x=-47[/tex]

Solve for x:

[tex]x=-\dfrac{47}{90}[/tex]

Therefore:

[tex]\LARGE\text{$-0.5\overline{2}\longleftrightarrow -\dfrac{47}{90}$}[/tex]

[tex]\dotfill[/tex]

[tex]\LARGE\text{$\boxed{0.\overline{7}}$}[/tex]

Here, the repeating digit is 7. As there is one digit in the repeating part, we multiply by 10¹ = 10.

[tex]\textsf{Equation 1:}\quad x=0.\overline{7}\\\\\textsf{Equation 2:}\quad 10x=7.\overline{7}[/tex]

Subtract the first equation from the second equation:

[tex]10x-x=7.\overline{7}-0.\overline{7}\\\\9x=7[/tex]

Solve for x:

[tex]x=\dfrac{7}{9}[/tex]

Therefore:

[tex]\LARGE\text{$0.\overline{7}\longleftrightarrow \dfrac79$}[/tex]

[tex]\dotfill[/tex]

[tex]\LARGE\text{$\boxed{4.\overline{21}}$}[/tex]

Here, the repeating digits are 21. As there is two digits in the repeating part, we multiply by 10² = 100.

[tex]\textsf{Equation 1:}\quad x=4.\overline{21}\\\\\textsf{Equation 2:}\quad 100x=421.\overline{21}[/tex]

Subtract the first equation from the second equation:

[tex]100x-x=421.\overline{21}-4.\overline{21}\\\\99x=417[/tex]

Solve for x:

[tex]x=\dfrac{417}{99}[/tex]

Reduce the fraction to is simplest form:

[tex]x=\dfrac{417\div 3}{99\div 3}=\dfrac{139}{33}[/tex]

Express as a mixed number:

[tex]x=\dfrac{132+7}{33}=\dfrac{132}{33}+\dfrac{7}{33}=4\frac{7}{33}[/tex]

Therefore:

[tex]\LARGE\text{$4.\overline{21}\longleftrightarrow 4\frac{7}{33}$}[/tex]