Respuesta :

Answer:
_______________________________________________
The simplied version is:
_______________________________________________
                " [tex] \frac{3v(v^2+7)}{(v^2+13v+42)} [/tex]  "  ;

or; write as:  " [tex] \frac{3v(v^2+7)}{(v+7)(v+6)} [/tex]  " .
_______________________________________________
Explanation:
_______________________________________________
Given:
_______________________________________________
     " [tex] \frac{6v^3 +42 v}{2v^2 +26v + 84} [/tex]  " ;
_______________________________________________
     →  Factor out a "6v"[tex] \frac{6v(v^2+7)}{2(v^2+13v+42)}[/tex] in the "numerator"; & factor out a "2" in the denominator;  as follows:
____________________________________
→ [tex] \frac{6v(v^2+7)}{2(v^2+13v+42)}[/tex] ;
____________________________________
 " [tex] \frac{3v(v^2+7)}{(v^2+13v+42)} [/tex] " ;
______________________________________________

or; factor out the "denominator" :
______________________________________________
→ (v² + 13v + 42) =  (v+7)(v+6) ;
______________________________________________
and write as: 
______________________________________________
 " [tex] \frac{3v(v^2+7)}{(v+7)(v+6)} [/tex] " .
______________________________________________