Answer:
_______________________________________________
The simplied version is:
_______________________________________________
" [tex] \frac{3v(v^2+7)}{(v^2+13v+42)} [/tex] " ;
or; write as: " [tex] \frac{3v(v^2+7)}{(v+7)(v+6)} [/tex] " .
_______________________________________________
Explanation:
_______________________________________________
Given:
_______________________________________________
" [tex] \frac{6v^3 +42 v}{2v^2 +26v + 84} [/tex] " ;
_______________________________________________
→ Factor out a "6v"[tex] \frac{6v(v^2+7)}{2(v^2+13v+42)}[/tex] in the "numerator"; & factor out a "2" in the denominator; as follows:
____________________________________
→ [tex] \frac{6v(v^2+7)}{2(v^2+13v+42)}[/tex] ;
____________________________________
→ " [tex] \frac{3v(v^2+7)}{(v^2+13v+42)} [/tex] " ;
______________________________________________
or; factor out the "denominator" :
______________________________________________
→ (v² + 13v + 42) = (v+7)(v+6) ;
______________________________________________
and write as:
______________________________________________
→ " [tex] \frac{3v(v^2+7)}{(v+7)(v+6)} [/tex] " .
______________________________________________