what is the quotient of 2m^9n^4/-4m^-3n^-2 in simplest form? assume m=0,n=0

A.-m^-12n^6/2
B.-m^27n^8/2
C.6m^12n^6
D.8m^12n^6

Respuesta :

Answer:

The value of the quotient is  [tex]-\frac{m^{12}n^{6}}{2}[/tex].

Step-by-step explanation:

The given expression is,

[tex]\frac{2m^9n^4}{-4m^{-3}n^{-2}}[/tex]

We have to find the quotient of the given expression.

Use the exponent rule,

[tex]\frac{a^n}{a^m} =a^{n-m}[/tex]

[tex]\frac{2m^9n^4}{-4m^{-3}n^{-2}}=-\frac{m^{9-(-3)}n^{4-(-2)}}{2}[/tex]

[tex]\frac{2m^9n^4}{-4m^{-3}n^{-2}}=-\frac{m^{9+3}n^{4+2}}{2}[/tex]

[tex]\frac{2m^9n^4}{-4m^{-3}n^{-2}}=-\frac{m^{12}n^{6}}{2}[/tex]

Therefore the value of the quotient is  [tex]-\frac{m^{12}n^{6}}{2}[/tex].

Answer:

A: -m^-12n^6/2

Step-by-step explanation:

I just did the Quiz on EDGE2020 and it's 200% correct!  

Also, heart and rate if you found this answer helpful!! :) (P.S It makes me feel good to know I helped someone today!!)  :)  

Ver imagen Sonictanker777