Answer:
The correct options are :
[tex]\bf B.) \frac{GJ}{MP}=\frac{GH}{MN}[/tex]
C.) ∠H≅∠N
Step-by-step explanation:
By using the property of similarity of triangles, We get
The corresponding sides of the similar triangles are proportional to each other and the corresponding angles are congruent to each other.
So, given △GHJ∼△MNP
[tex]\implies \frac{GH}{MN}=\frac{HJ}{NP}=\frac{GJ}{MP}\text{ , and}\\\\\angle G\cong \angle M,\:\:\angle H\cong\angle N ,\:\: \angle J\cong\angle P......(1)[/tex]
The given options are :
A.) m∠J=m∠P
[tex]B.) \frac{GJ}{MP}=\frac{GH}{MN}[/tex]
C.) ∠H≅∠N
D.) HJ ≅ NP
E.) GH=MN
Now, From equation (1)
The correct options are :
[tex]\bf B.) \frac{GJ}{MP}=\frac{GH}{MN}[/tex]
C.) ∠H≅∠N