Respuesta :

[tex]\bf z_1=\stackrel{a}{9}\stackrel{b}{-9}i\implies (9~,~-9)\qquad \qquad \qquad z_2=\stackrel{a}{10}\stackrel{b}{-9}i\implies (10~,~-9)\\\\ -------------------------------\\\\ ~~~~~~~~~~~~\textit{distance between 2 points}\\ \quad \\[/tex]

[tex]\bf \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~{{ 9}} &,&{{ -9}}~) % (c,d) &&(~{{ 10}} &,&{{ -9}}~) \end{array}\quad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ d=\sqrt{[10-9]^2+[-9-(-9)]^2}\implies d=\sqrt{(10-9)^2+(-9+9)^2} \\\\\\ d=\sqrt{1^2+0}\implies d=\sqrt{1}\implies d=1[/tex]

The distance is 1 unit.

What is Distance Formula?

The distance formula which is used to find the distance between two points in a two-dimensional plane is also known as the Euclidean distance formula.

Let us assume that  (x1 , y1) and (x2, y2).

The Euclidean distance formula says:

D= √( x2 - x1)² + (y2 - y1)²

For example

Find the distance between points P(3, 2) and Q(4, 1).

Given:

P(3, 2) =  ( x1, y1)

Q(4, 1) =  (x2, y2)

Using Euclidean distance formula,

D= √( x2 - x1)² + (y2 - y1)²

PQ = √[(4 – 3)2 + (1 – 2)2]

PQ = √[(1)2 + (-1)2]

PQ = √2 units.

are two points in a two-dimensional plane.

Given:

z1=9-9i,

z2=10-9i

let us consider (9, 9) and ( 10, -9)

d= √( x2 - x1)² + (y2 - y1)²

d= √(10-9)²+ (-9 + 9 )²

d= √1 + 0

d= 1 unit.

Learn more about this concept here:

https://brainly.com/question/16869237

#SPJ2